

MAINE AQUACULTURE ASSOCIATION

NATIONAL AQUACULTURE RESEARCH NEEDS

An Industry Perspective

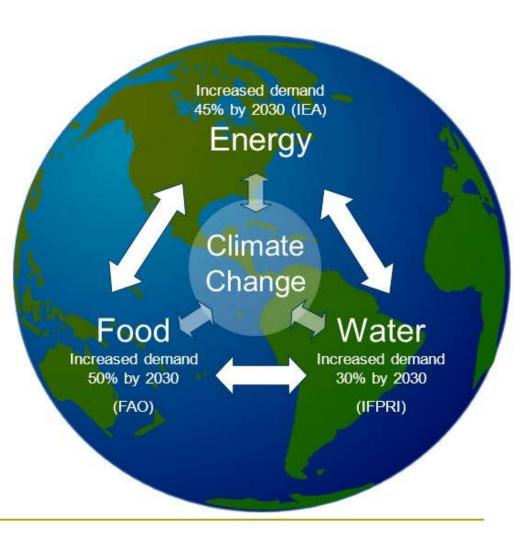
SINCE 1950 WE HAVE CONSUMED 2X THE RESOURCES THAN ALL PRIOR HISTORY COMBINED

Population Growth Throughout History World Population 2050 - 9.1 Billion 9 8 7 2005 - 6.4 Billion 6 5 Billions 4 3 1945 - 2.3 Billion 2 1800 - 1 Billion 1 First Modern Humans 1492 - 500 Million 0 160.000 100.000 10.000 2.150 7.000 6.000.0001.000 1.000 2.000B.C. B.C. B.C. B.C. A.D. A.D. A.D. A.D. B.C. B.C. B.C. B.C. B.C. B.C.

Source: United Nations

RISING LIVING STANDARDS

WATER - NUTRIENTS



MAINE AQUACULTURE ASSOCIATION

Global food system – Future projections

- 1. Increasing population
- 2. Changing diets
- 3. Losing land to urbanisation and rising sea levels
 - 4. Water limits
 - 5. Phosphorous limits

EFFICIENCIES OF DIFFERENT ANIMAL PROTEIN SECTORS FOOD AND FRESH WATER REQUIREMENTS TO PRODUCE 1KG

8 kg feed 1857 gallons

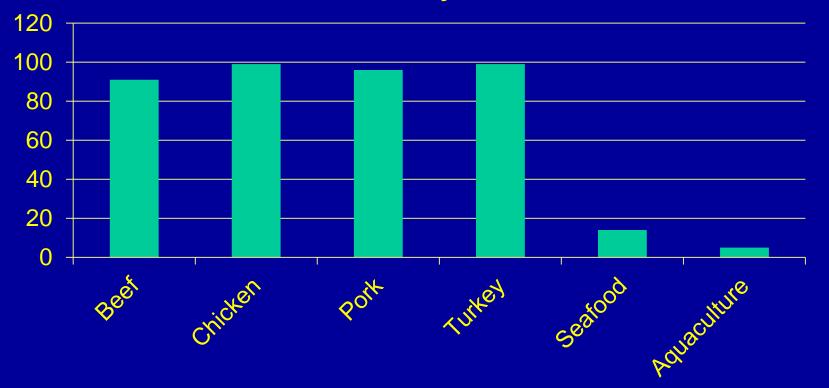
3 kg feed 756 gallons

2 kg feed 469 gallons

1.1 kg feed 132 gallons

Aquatic organisms 10-20% more efficient than land animals at converting energy, water and feed to meat and protein

MORE ON EFFICIENCIES AND IMPACTS


YIELDS AND RETENTION RATES FOR VARIOUS ANIMALS

	ATLANTIC SALMON	PIGS	CHICKEN	LAMB
HARVEST YIELD (%)	86-92	72.5	65.6	46.9
ENERGY RETENTION(%)	23	14	10	5
PROTEIN RETENTION (%)	31	18	21	5

SHARE OF U.S. CONSUMPTION SUPPLIED BY DOMESTIC PRODUCTION

% Domestically Sourced

MAINE AQUACULTURE ASSOCIATION

Source: USDA2017,USDOC2016

KEY COMPONENTS OF AQUACULTURE DEVELOPMENT

COMMON "TYPES" OF AQUACULTURE RESEARCH PROGRAMS

- SHORT/MEDIUM TERM "FAST" RESPONSE
- LONG TERM PROGRAMS
- REGIONAL FOCUSED
- SPECIES FOCUSED
- BOTTLENECK/CHALLENGE FOCUSED
- PRODUCTION METHOD FOCUSED

National Strategic Plan For Federal Aquaculture Research (2014-2019) 9 Strategic Goals

- Advance Understanding of the Interactions of Aquaculture and the Environment
- Employ Genetics to Increase Productivity and Protect Natural Populations
- Counter Disease in Aquatic Organisms and Improving Biosecurity
- Improve Production Efficiency and Well-Being
- Improve Nutrition and develop Novel Feeds
- Increase Supply of Nutritious, Safe, High-quality Seafood and Aquatic Products
- Improve Performance of Production Systems
- Create a Skilled Workforce and Enhance Technology Transfer
- Develop and Use Socioeconomic and Business Research to Advance Domestic Aquaculture

ROLE OF RESEARCH IN NATIONAL AQUACULTURE DEVELOPMENT

- REGULATORY AND MANAGEMENT CONCERNS
- "SPARING" CAPITAL
- REDUCING RISK
- REDUCING VARIABILITY....INCREASING PREDICTABILITY
- INCREASING PRODUCTION EFFICIENCY
- INCREASING ROI
- PRODUCT/METHOD "PROSPECTING"
- INNOVATION
- IMPROVING PUBLIC UNDERSTANDING/PERCEPTION

INDUSTRY AQUACULTURE RESEARCH "PRIORITIES" 2018

- GENETICS
- ANIMAL/PLANT HEALTH AND WELFARE
- NUTRITION
- ENGINEERING/TECHNOLOGY
- SPECIES ASSESSMENT
- FARM/ENVIRONMENT INTERACTIONS
- PRODUCT DEVELOPMENT
- MARKET DYNAMICS AND CONSUMER PREFERENCES
- RISK ANALYSIS AND MANAGEMENT
- FARM/PRODUCTION PLANNING AND MANAGEMENT
- REGULATORY COSTS AND DUPLICATION