DORAND ATMOSPHERIC DORAND ATMOSPHERIC DORAND THOUSAND ATMOSPHERIC DORAND THOUSAND TH

NOAA FISHERIES

Senior Research Scientist for Economics

Doug Lipton

Management Strategy Evaluation and Valuing NOAA: An Example Using Fishery Stock Assessments

> NOAA Science Advisory Board Silver Spring, MD

> > October 30, 2017

A Programming Note

The underlying original study for this presentation was developed for other purposes, so the presentation has been modified to address the NOAA SAB topic of Valuation of NOAA (and to fit your screen).

Today's Question: How do we value a NOAA activity or investment of resources?

Original Question: What is the impact on a fishery of conducting more frequent stock assessment updates or assimilating data more quickly?

Pagination not final (cite DOI) / Pagination provisoire (citer le DOI)

ARTICLE

An evaluation of acceptable biological catch (ABC) harvest control rules designed to limit overfishing

John Wiedenmann, Michael Wilberg, Andrea Sylvia, and Thomas Miller

Adding An Economist's Perspective

Results in #'s, not \$

Table 6. Median performance measures across control rules and exploitation scenarios.

			1					
	,	Long-term	Prob. of	Overfishing	Initial	Long-term		
	Exploitation	biomass	overfishing	magnitude	catch	catch)	Catch	Rebuildin
Control rule	history	(S/S _{MSY})	(<i>P</i> _{OF})	(F/F_{lim})	(C/MSY)	(C/MSY)	AAV	years
OFL	Light	0.63	0.51	1.61	1.08	0.66	0.16	_
	Moderate	0.62	0.49	1.45	0.69	0.65	0.13	
	Heavy	0.63	0.46	1.55	0.33	0.58	0.13	16
	All	0.63	0.49	1.53	0.64	0.63	0.14	16

A FINE KETTLE OF FISH, OR IS IT?

Management Strategy Evaluation

Summer Flounder Demonstration: Stock Assessment Updates and Data Lags

- Currently 3 year quota specification
 - What if
 - 2, 3, 5 or 7 years?
- Data lag
 - 1 or 2 years?

Sum of Catches (2014-2040) Under Different Scenarios

	SA Interval	DML	Catch [1000mt]	(5%)	(95%)
	2	1	234.2	209.4	269.7
	2	2	222.9	197.3	258.1
<	3	1	232.9	206.2	267.7
	3	2	222.1	197.6	256.8
	5	1	231.5	201.6	268.1
	5	2	221.1	193.0	258.5
	7	1	228.1	199.7	270.1
<	7	2	219.8	192.4	259.4

Our 2 Kettles of Fish

Summer Flounder Harvest & SSB

Some Simulation Results 2014-2040

Relative biomass —— Relative catch ——

2014 used as reference year (biomass=catch=1) Scenario: SA interval = 3 years

DML = 1 year

Comparing Two Scenarios (Stock Assessment Update/Data Lag)

Catch for two scenarios

Scenario 7/2 — Total Catch 219.8 mt

Deconstructing the Economics

- Revenues
- Discounting
- Demand
- Production Costs
- Producer & Consumer Welfare
- Recreational Value

Why Not Express in Revenues?

• What price do I use?

NMFS Landings Query Results

You Asked For the Following:

٠	Year	:	From:	2000	To:
	Species		ET OUNT	FD	ermon

-	opcorco	
٠	State	

: FLOUNDER, SUMMER : All States

2015

SPECIES: FLOUNDER, SUMMER	
YEAR RANGE: FROM: 2000 ▼ (Earliest Year)	Choose the year(sometimes are hi
TO: 2015 - (Latest Year)	
GEOGRAPHICAL AREA STATE/AREA: All States	Areas are arrange give you the total surveys. Florida e (west+east+inlane
OUTPUT FORM: TABLE	The summarized "ASCII File" optio

Year	Species	Metric Tons	Pounds	\$
2000	FLOUNDER, SUMMER	4,998.3	11,019,193	19,692,892
2001	FLOUNDER, SUMMER	4,860.6	10,715,630	17,331,869
2002	FLOUNDER, SUMMER	6,453.5	14,227,332	21,071,477
2003	FLOUNDER, SUMMER	6,499.2	14,328,181	23,188,120
2004	FLOUNDER, SUMMER	8,139.8	17,945,026	28,882,286
2005	FLOUNDER, SUMMER	7,749.1	17,083,575	30,118,259
2006	FLOUNDER, SUMMER	6,331.9	13,959,339	29,764,388
2007	FLOUNDER, SUMMER	4,445.5	9,800,522	23,848,565
2008	FLOUNDER, SUMMER	4,096.1	9,030,351	21,926,159
2009	FLOUNDER, SUMMER	4,896.6	10,795,138	22,358,627
2010	FLOUNDER, SUMMER	5,971.1	13,163,869	28,562,911
2011	FLOUNDER, SUMMER	7,218.0	15,912,725	31,775,642
2012	FLOUNDER, SUMMER	5,672.2	12,504,943	30,389,195
2013	FLOUNDER, SUMMER	5,395.3	11,894,469	28,613,269
2014	FLOUNDER, SUMMER	4,910.7	10,826,204	31,390,069
2015	FLOUNDER, SUMMER	4,839.3	10,668,732	33,641,535
GRAND TOTALS:	_	92,477.2	203,875,229	422,555,263

Time Series of Future Revenues (3/1)

 Revenue at constant price, recent average price

SUM 2014-2040: \$708.9 million

Discounting – When the fish go in the kettle matters.

 A lot of fish revenue at the end of the period, not as valuable as more fish revenue early on.

Discounted Revenues (3/1 Scenario)

- Revenue at constant price
- Revenue discounted (r=3%)

SUM 2014-2040: \$481.2 million

Add Realism - Demand

- Prices Fluctuate With Landings
 - Tends to dampen impact on fisher's revenues
 - Reflects consumer benefits
- How elastic is demand for summer flounder?

Synthetic Inverse Demand System

$w_{it}\Delta \ln v_{it} = \alpha_i + \sum_{ji} \pi_{ij}\Delta \ln q_{jt} + \pi_i \Delta \ln Q_t - \theta_1 w_{it} \Delta \ln Q_t - \theta_2 w_{it} \Delta \ln (q_{it}/Q_t) + \varepsilon_{it}$ (1)

Table 5: Coefficients of the SIDS model.

Table 2: Demand data summary (monthly averages). Variable STD Mean Min Max Summer flounder landings 59.9714.5611.000.22Other flatfish landings 32.9718.196.7783.95Groundfish landings 81.63 36.0035.97245.31Flatfish imports 33.929.7911.4465.01Groundfish imports 172.6450.5540.23313.30 Summer flounder price 3.070.811.526.93Other flatfish price 2.120.460.903.31Groundfish price 1.170.180.771.72Flatfish imports price 2.063.540.855.43Groundfish imports price 2.981.950.584.93

Coefficient	Estimate	SE	р
α_1	-0.0002	0.0002	0.298
α_2	0.0006	0.0002	0.003
α_3	0.0000	0.0003	0.935
α_4	-0.0001	0.0002	0.515
α_5	-0.0003	0.0004	0.547
π_1	-0.0094	0.0032	0.003
π_2	-0.0241	0.0057	0
π_3	-0.0033	0.0071	0.643
π_4	-0.0113	0.0081	0.164
π_5	-0.0574	0.0329	0.081
π_{11}	-0.0041	0.0008	0
π_{12}	-0.0068	0.0007	0
π_{13}	-0.0002	0.0006	0.792
π_{14}	-0.0043	0.0008	0
π_{15}	0.0154	0.0010	0
π_{22}	-0.0214	0.0024	0
π_{23}	-0.0041	0.0012	0.001
π_{24}	0.0035	0.0014	0.010
π_{25}	0.0289	0.0020	0
π_{33}	-0.0147	0.0027	0
π_{34}	0.0049	0.0017	0.004
π_{35}	0.0141	0.0026	0
π_{44}	-0.0223	0.0032	0
π_{45}	0.0182	0.0029	0
π_{55}	-0.0767	0.0067	0
θ_1	0.8945	0.0535	0
θ_2	0.0948	0.0199	0

Table 6: Compensated price flexibilities evaluated at mean quantities and prices.

	Summer flounder	Other flatfish	Groundfish	Flatfish	Groundfish	SCALE
	- domestic (G1)	- domestic (G2)	- domestic (G3)	import (G4)	import (G5)	
G1	-0.175	-0.132	0.008	-0.075	0.375	-1.087
	(0.013)	(0.013)	(0.013)	(0.017)	(0.019)	(0.040)
G2	-0.077	-0.344	-0.039	0.55	0.405	-1.184
	(0.008)	(0.027)	(0.015)	(0.016)	(0.024)	(0.033)
G3	0.003	-0.028	-0.211	0.056	0.179	-0.923
	(0.005)	(0.010)	(0.017)	(0.014)	(0.020)	(0.032)
G4	-0.026	0.032	0.046	-0.238	0.186	-0.974
	(0.006)	(0.009)	(0.012)	(0.011)	(0.014)	(0.021)
$\mathbf{G5}$	0.030	0.055	0.034	0.043	-0.163	-0.989
	(0.002)	(0.003)	(0.004)	(0.003)	(0.008)	(0.009)

Note: Standard errors in parentheses; not significant (p > 0.05) in italics.

Some Results: Simulated Prices From Demand Estimate (3/1 Scenario)

Demand Adjusted Revenues (3/1)

- Revenue discounted (r=3%)
- Revenue discounted (r=3%) with demand driven price

SUM 2014-2040: \$503.3 million

Not Done Yet: Really Want Profits Or At Least Revenues Net of Costs (Quasi-Rents)

$$\Delta D_{nt} = \beta_0 + \sum_{i \in I} \Delta y_{int} \left(\beta_i + \beta_{ki} k_n + \beta_{bi} b_{it} + \beta_{si} ST_{nt} \right) + \epsilon_{nt}$$

Variable	Mean	SD	Min	Max
Days at sea - D	113	74	1	421
Landings of summer flounder [lbs]- y_{SF}	22895	32045	0	272450
Landings of other bottom fish [lbs]- y_{FL}	93732	146133	0	1727766
Landings of bait fish [lbs] - y_{BT}	67194	342143	0	9140000
Landings of shell fish [lbs] - y_{SH}	110450	486541	0	9896700
Landings of other fish species [lbs] - y_{OT}	67008	213086	0	3599206
Vessel tonnage [Gt] - k	96	51	1	201
Biomass index for summer flounder - b_{SF}	0.962	0.195	0.690	1.337
Cost [1000 2014 USD]	97.59	106.47	0.27	765.72

Table 3: Fleet data summary.

How do days as sea change due to a change in SF biomass and TAC?

Table 8: Effort first-difference regression results.

Coefficient	Estimate	SE	р
β_0	-2.573167	0.397958	0
β_{SF}	0.001867	0.000278	0
β_{FL}	0.000503	0.000060	0
β_{BT}	0.000021	0.000032	0.509
β_{SH}	0.000283	0.000040	0
β_{OT}	0.000149	0.000025	0
β_{kSF}	-0.000006	0.000001	0
β_{kFL}	-0.000002	0.000000	0
β_{kBT}	0.000000	0.000000	0
β_{kSH}	-0.000001	0.000000	0
β_{kOT}	0.000000	0.000000	0.001
β_{bSF}	-0.000400	0.000115	0

Note: Coefficients for time and state dummies omitted.

Producer Net Revenues (3/1)

- Revenue discounted (r=3%) with demand driven price
- Net revenue discounted (r=3%) with demand driven price

SUM 2014-2040: \$311.8 million

An Accounting For One Scenario (3/1)

125 -Commercial Net Revenue 100 -COM [mil.USD, d=3%] 75-50 -SUM 2014-2040: 25 -> \$311.8 million 0 -2030 2020 2040

Year

An Aside About Consumer Surplus

QUANTITY

Commercial Net Revenue + Consumer Surplus (3/1)

Commercial Net RevenueConsumer Surplus

Recreational Values – Random Utility Model

$$v_{s,m,l}^{i} = \beta_{cost} cost_{l}^{i} + \sum_{s \in S} \beta_{s} c_{s,m,l} d_{s} + \sum_{m \in M} \beta_{m} d_{m} + \beta_{ns} ln(ns_{l})$$

Table 9: Nested logit results for recreational harvest.

Coefficient	Estimate	SE	р
γ_{cost}	-0.084	0.003	0.000
γ_{SF}	3.261	0.063	0.000
γ_{SG}	1.726	0.038	0.000
γ_{BT}	0.479	0.020	0.000
γ_{HD}	-1.269	0.064	0.000
γ_{PR}	0.712	0.041	0.000
γ_{ns}	3.209	0.107	0.000
Dissimilarity parameters			
$\tau_{SF,SH}$	1.593	0.064	
$\tau_{SF,HD}$	2.381	0.077	
$\tau_{SF,PR}$	1.756	0.063	
$\tau_{SG,SH}$	2.060	0.063	
$\tau_{SG,HD}$	2.239	0.071	
$\tau_{SG,PR}$	2.026	0.062	
$\tau_{BT,SH}$	1.614	0.060	
$\tau_{BT,HD}$	2.520	0.073	
$\tau_{BT,PR}$	1.434	0.058	

Note: LR test for IIA (τ =1): $\chi^2(9) = 2358.61$, $p > \chi^2 = 0.000$.

Table 4: Recreational data summary - used for two part model.

Variable	Mean	SD	Min	Max
Summer flounder (SF): 2004-2014				
Catch rate c	3.274	5.094	0	111
Hours of fishing hr	4.059	1.648	0.5	14
Experience - exp	23.898	34.688	1	365
Biomass [mt]	45026	2348	40323	48549
Small game fish (SG): 2014				
Catch rate c	2.425	6.074	0	210
Hours of fishing hr	3.911	2.043	0.5	14
Experience - exp	30.781	46.496	1	361
Other bottom fish (BT): 2014				
Catch rate c	11.578	16.453	0	200
Hours of fishing hr	4.173	1.822	0.5	12
Experience - exp	25.701	40.122	1	365

Adding Recreational Welfare (3/1)

- Commercial Net Revenue
- Consumer Surplus
- Recreational welfare –
 Compensating Variation

SUM 2014-2040: ➤ \$311.8 million ➤ \$635.9 million ➤ \$901.3 million = \$1,849 million

Comparing Scenarios

Value for two scenarios:

Scenario 3/1 _____ Total Catch 234.2 mt Total Net Value: \$1,849 Million

Scenario 7/2 Total Catch 219.8 mt Total Net Value: \$1,809 Million

NOAA FISHERIES

The Bottom Line

- Difference in # of Assessments
 - ➢ 9 versus 4 over 27 years
- Cost of 5 more stock assessments << \$40 million</p>
- National <u>average</u> cost of a stock assessment -\$1.7 million (Merrick and Methot)
- Positive net benefit to society from conducting stock assessment every 3 years compared to 7
 - ➤ ≈ \$32 million
 - Most of benefits accrue to commercial downstream firms, final consumers and recreational fishermen

Concluding Thoughts

- MSE's Are Complex, Data Intensive, Time Consuming to Build
- Economic Component Too
- Once Built, Scenario Analysis Relatively Simple, Adaptable to Answer Multiple Questions
- Require Refreshment and Updating
- Powerful Tool For Valuation
- Applications Where Implementation Model (Other NOAA Products) Less Direct?

Questions? Comments?

Thanks to Barbara Hutniczak

