Management Strategy Evaluation and Valuing NOAA: An Example Using Fishery Stock Assessments

NOAA Science Advisory Board Silver Spring, MD

October 30, 2017

A Programming Note

The underlying original study for this presentation was developed for other purposes, so the presentation has been modified to address the NOAA SAB topic of Valuation of NOAA (and to fit your screen).

Today's Question: How do we value a NOAA activity or investment of resources?

Original Question: What is the impact on a fishery of conducting more frequent stock assessment updates or assimilating data more quickly?

Pagination not final (cite DOI) / Pagination provisoire (citer le DOI)

An evaluation of acceptable biological catch (ABC) harvest control rules designed to limit overfishing

Adding An Economist's Perspective

Results in \#'s, not \$

A FINE KETTLE OF FISH, OR IS IT?

Management Strategy Evaluation

Summer Flounder Demonstration: Stock Assessment Updates and Data Lags

- Currently 3 year quota specification
- What if
- 2, 3, 5 or 7 years?
- Data lag
- 1 or 2 years?

Sum of Catches (2014-2040) Under Different Scenarios

SA Interval	DML	Catch $[1000 \mathrm{mt}]$	(5%)	(95\%)
2	1	234.2	209.4	269.7
2	2	222.9	197.3	258.1
3	1	232.9	$\mathbf{2 0 6 . 2}$	$\mathbf{2 6 7 . 7}$
3	2	222.1	197.6	256.8
5	1	231.5	201.6	268.1
5	2	221.1	193.0	258.5
7	1	228.1	199.7	270.1
7	2	219.8	192.4	$\mathbf{2 5 9 . 4}$

Our 2 Kettles of Fish

Summer Flounder Harvest \& SSB

Some Simulation Results 2014-2040

Relative biomass
Relative catch

2014 used as reference year (biomass=catch=1)
Scenario:
SA interval = 3 years
DML = 1 year

Comparing Two Scenarios (Stock Assessment Update/Data Lag)

Catch for two scenarios
Scenario 3/1
Total Catch 234.2 mt

Scenario 7/2
 Total Catch 219.8 mt

Deconstructing the Economics

- Revenues
- Discounting
- Demand
- Production Costs
- Producer \& Consumer Welfare
- Recreational Value

Why Not Express in Revenues?

- What price do I use?

SPECIES: FLOUNDER, SUMMER

YEAR RANGE:

FROM: 2000 (Earliest Year)

TO: 2015 - (Latest Year)
GEOGRAPHICAL AREA
STATE/AREA:
All States \quad

OUTPUT FORM:

TABLE

Choose the year(sometimes are hị

Areas are arrange give you the total surveys. Florida ϵ (west+east+inlans

The summarized "ASCII File" optio

NMFS Landings Query Results

You Asked For the Following:

```
- Year
Species : From: 2000 To: 201
State : All States
```

Year	Species	Metric Tons	Pounds	\$	
2000	FLOUNDER, SUMMER	$4,998.3$	$11,019,193$	$19,692,892$	
2001	FLOUNDER, SUMMER	$4,860.6$	$10,715,630$	$17,331,869$	
2002	FLOUNDER, SUMMER	$6,453.5$	$14,227,332$	$21,071,477$	
2003	FLOUNDER, SUMMER	$6,499.2$	$14,328,181$	$23,188,120$	
2004	FLOUNDER, SUMMER	$8,139.8$	$17,945,026$	$28,882,286$	
2005	FLOUNDER, SUMMER	$7,749.1$	$17,083,575$	$30,118,259$	
2006	FLOUNDER, SUMMER	$6,331.9$	$13,959,339$	$29,764,388$	
2007	FLOUNDER, SUMMER	$4,445.5$	$9,800,522$	$23,848,565$	
2008	FLOUNDER, SUMMER	$4,096.1$	$9,030,351$	$21,926,159$	
2009	FLOUNDER, SUMMER	$4,896.6$	$10,795,138$	$22,358,627$	
2010	FLOUNDER, SUMMER	$5,971.1$	$13,163,869$	$28,562,911$	
2011	FLOUNDER, SUMMER	$7,218.0$	$15,912,725$	$31,775,642$	
2012	FLOUNDER, SUMMER	$5,672.2$	$12,504,943$	$30,389,195$	
2013	FLOUNDER, SUMMER	$5,395.3$	$11,894,469$	$28,613,269$	
2014	FLOUNDER, SUMMER	$4,910.7$	$10,826,204$	$31,390,069$	
2015	FLOUNDER, SUMMER	$4,839.3$	$10,668,732$	$33,641,535$	
GRAND TOTALS:		-	$92,477.2$	$203,875,229$	$422,555,263$

Time Series of Future Revenues (3/1)

> Revenue at constant price, recent average price

SUM 2014-2040:
\$708.9 million

Discounting - When the fish go in the kettle matters.

- A lot of fish revenue at the end of the period, not as valuable as more fish revenue early on.

Discounted Revenues (3/1 Scenario)

$>$ Revenue at constant price
> Revenue discounted ($r=3 \%$)

SUM 2014-2040:
\$481.2 million

Add Realism - Demand

- Prices Fluctuate With Landings
- Tends to dampen impact on fisher's revenues
- Reflects consumer benefits
- How elastic is demand for summer flounder?

Synthetic Inverse Demand System

$$
w_{i t} \Delta \ln v_{i t}=\alpha_{i}+\sum_{\text {friert Fancy Economic Equation Here }} \pi_{i j} \Delta \ln q_{j t}+\pi_{i} \Delta \ln Q_{t}-\theta_{1} w_{i t} \Delta \ln Q_{t}-\theta_{2} w_{i t} \Delta \ln \left(q_{i t} / Q_{t}\right)+\varepsilon_{i t} \text { (1) }
$$

Table 2: Demand data summary (monthly averages).

Variable	Mean	STD	Min	Max
Summer flounder landings	14.56	11.00	0.22	59.97
Other flatfish landings	32.97	18.19	6.77	83.95
Groundfish landings	81.63	36.00	35.97	245.31
Flatfish imports	33.92	9.79	11.44	65.01
Groundfish imports	172.64	50.55	40.23	313.30
Summer flounder price	3.07	0.81	1.52	6.93
Other flatfish price	2.12	0.46	0.90	3.31
Groundfish price	1.17	0.18	0.77	1.72
Flatfish imports price	3.54	0.85	2.06	5.43
Groundfish imports price	2.98	0.58	1.95	4.93

Table 5: Coefficients of the SIDS model.			
Coefficient	Estimate	SE	p
α_{1}	-0.0002	0.0002	0.298
α_{2}	0.0006	0.0002	0.003
α_{3}	0.0000	0.0003	0.935
α_{4}	-0.0001	0.0002	0.515
α_{5}	-0.0003	0.0004	0.547
π_{1}	-0.0094	0.0032	0.003
π_{2}	-0.0241	0.0057	0
π_{3}	-0.0033	0.0071	0.643
π_{4}	-0.0113	0.0081	0.164
π_{5}	-0.0574	0.0329	0.081
π_{11}	-0.0041	0.0008	0
π_{12}	-0.0068	0.0007	0
π_{13}	-0.0002	0.0006	0.792
π_{14}	-0.0043	0.0008	0
π_{15}	0.0154	0.0010	0
π_{22}	-0.0214	0.0024	0
π_{23}	-0.0041	0.0012	0.001
π_{24}	0.0035	0.0014	0.010
π_{25}	0.0289	0.0020	0
π_{33}	-0.0147	0.0027	0
π_{34}	0.0049	0.0017	0.004
π_{35}	0.0141	0.0026	0
π_{44}	-0.0223	0.0032	0
π_{45}	0.0182	0.0029	0
π_{55}	-0.0767	0.0067	0
θ_{1}	0.8945	0.0535	0
θ_{2}	0.0948	0.0199	0

Table 6: Compensated price flexibilities evaluated at mean quantities and prices.

	Summer flounder - domestic (G1)	Other flatfish - domestic (G2)	Groundfish - domestic (G3)	Flatfish import (G4)	Groundfish import (G5)	SCALE
G1	-0.175	-0.132	0.008	-0.075	0.375	-1.087
	(0.013)	(0.013)	(0.013)	(0.017)	(0.019)	(0.040)
G2	-0.077	-0.344	-0.039	0.55	0.405	-1.184
	(0.008)	(0.027)	(0.015)	(0.016)	(0.024)	(0.033)
G3	0.003	-0.028	-0.211	0.056	0.179	-0.923
	(0.005)	(0.010)	(0.017)	(0.014)	(0.020)	(0.032)
G4	-0.026	0.032	0.046	-0.238	0.186	-0.974
	(0.006)	(0.009)	(0.012)	(0.011)	(0.014)	(0.021)
G5	0.030	0.055	0.034	0.043	-0.163	-0.989
	(0.002)	(0.003)	(0.004)	(0.003)	(0.008)	(0.009)

Note: Standard errors in parentheses; not significant ($p>0.05$) in italics.

Some Results: Simulated Prices From Demand Estimate (3/1 Scenario)

Demand Adjusted Revenues (3/1)

> Revenue discounted ($r=3 \%$)
> Revenue discounted ($r=3 \%$) with demand driven price

SUM 2014-2040:
\$503.3 million

Not Done Yet: Really Want Profits Or At Least Revenues Net of Costs (Quasi-Rents)

$$
\Delta D_{n t}=\beta_{0}+\sum_{i \in I} \Delta y_{i n t}\left(\beta_{i}+\beta_{k i} k_{n}+\beta_{b i} b_{i t}+\beta_{s i} S T_{n t}\right)+\epsilon_{n t}
$$

Table 3: Fleet data summary.

Variable	Mean	SD	Min	Max
Days at sea - D	113	74	1	421
Landings of summer flounder [lbs]- $y_{S F}$	22895	32045	0	272450
Landings of other bottom fish [lbs]- $y_{F L}$	93732	146133	0	1727766
Landings of bait fish [lbs] - $y_{B T}$	67194	342143	0	9140000
Landings of shellfish [lbs] - $y_{S H}$	110450	486541	0	9896700
Landings of other fish species [lbs] - Yor	67008	213086	0	3599206
Vessel tonnage [Gt] - k	96	51	1	201
Biomass index for summer flounder - $b_{S F}$	0.962	0.195	0.690	1.337
Cost [1000 2014 USD]	97.59	106.47	0.27	765.72

How do days as sea change due to a change in SF biomass and TAC?

Table 8: Effort first-difference regression results.

Coefficient	Estimate	SE	P
β_{0}	-2.573167	0.397958	0
$\beta_{S F}$	0.001867	0.000278	0
$\beta_{F L}$	0.000503	0.000060	0
$\beta_{B T}$	0.000021	0.000032	0.509
$\beta_{S H}$	0.000283	0.000040	0
$\beta_{O T}$	0.000149	0.000025	0
$\beta_{k S F}$	-0.000006	0.000001	0
$\beta_{k F L}$	-0.000002	0.000000	0
$\beta_{k B T}$	0.000000	0.000000	0
$\beta_{k S H}$	-0.000001	0.000000	0
$\beta_{k O T}$	0.000000	0.000000	0.001
$\beta_{b S F}$	-0.000400	0.000115	0

Note: Coefficients for time and state dummies omitted.

Producer Net Revenues (3/1)

> Revenue discounted ($r=3 \%$) with demand driven price
$>$ Net revenue discounted ($r=3 \%$) with demand driven price

SUM 2014-2040: \$311.8 million

An Accounting For One Scenario (3/1)

Commercial Net Revenue

SUM 2014-2040:
> \$311.8 million

An Aside About Consumer Surplus

QUANTITY

Commercial Net Revenue + Consumer Surplus (3/1)

> Commercial Net Revenue
> Consumer Surplus

SUM 2014-2040:
> $\$ 311.8$ million
> $\$ 635.9$ million

Recreational Values - Random Utility

 ConceptCost: \$25

Catch Rate: 10 Fish

Recreational Values - Random Utility Model

$$
\begin{aligned}
& \sum_{m \in M}^{Q_{m}} \beta_{\mathrm{m}} d_{\mathrm{m}}+\beta_{\mathrm{na}} \ln \left(n s_{n}\right)
\end{aligned}
$$

Table 9: Nested logit results for recreational harvest.

Coefficient	Estimate	SE	P
$\gamma_{\text {cost }}$	-0.084	0.003	0.000
$\gamma_{S F}$	3.261	0.063	0.000
$\gamma_{S G}$	1.726	0.038	0.000
$\gamma_{B T}$	0.479	0.020	0.000
$\gamma_{H D}$	-1.269	0.064	0.000
$\gamma_{P R}$	0.712	0.041	0.000
$\gamma_{n s}$	3.209	0.107	0.000

Dissimilarity parameters		
$\tau_{S F, S H}$	1.593	0.064
$\tau_{S F, H D}$	2.381	0.077
$\tau_{S F, P R}$	1.756	0.063
$\tau_{S G, S H}$	2.060	0.063
$\tau_{S G, H D}$	2.239	0.071
$\tau_{S G, P R}$	2.026	0.062
$\tau_{B T, S H}$	1.614	0.060
$\tau_{B T, H D}$	2.520	0.073
$\tau_{B T, P R}$	1.434	0.058

Note: LR test for IIA $(\tau=1): \chi^{2}(9)=2358.61, p>\chi^{2}=0.000$.

Adding Recreational Welfare (3/1)

$>$ Commercial Net Revenue
> Consumer Surplus
> Recreational welfare Compensating Variation

SUM 2014-2040:
> \$311.8 million
> $\$ 635.9$ million
> $\$ 901.3$ million
= $\$ 1,849$ million

Comparing Scenarios

Value for two scenarios:
Scenario 3/1 \qquad Total Catch 234.2 mt Total Net Value:
\$1,849 Million
Scenario 7/2
Total Catch 219.8 mt Total Net Value: \$1,809 Million
= \$40 Million

The Bottom Line

$>$ Difference in \# of Assessments
> 9 versus 4 over 27 years
$>$ Cost of 5 more stock assessments $\ll \$ 40$ million
> National average cost of a stock assessment $\$ 1.7$ million (Merrick and Methot)
$>$ Positive net benefit to society from conducting stock assessment every 3 years compared to 7
$>\approx \$ 32$ million
> Most of benefits accrue to commercial downstream firms, final consumers and recreational fishermen

Concluding Thoughts

- MSE's Are Complex, Data Intensive, Time Consuming to Build
- Economic Component Too
- Once Built, Scenario Analysis Relatively Simple, Adaptable to Answer Multiple Questions
- Require Refreshment and Updating
- Powerful Tool For Valuation
- Applications Where Implementation Model (Other NOAA Products) Less Direct?

Questions? Comments?

Thanks to Barbara Hutniczak

