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Problem statement  
 
NOAA’s mission is to understand and predict changes in climate, weather, oceans, and coasts, 
and to share that knowledge and information with others. Numerical weather prediction (NWP) 
is the underpinning technology behind accurate predictions of weather changes. Products and 
services that NOAA provides improve when NOAA upgrades its NWP guidance; improving 
NWP is the rising tide that lifts many NOAA service boats.  While humans provide 
interpretations of numerical guidance, our advancing skill in predicting hurricanes, tornadoes, 
floods, and snowstorms are largely driven by NWP advances.  These improvements have 
accumulated at a rate of about one day a decade, i.e., a four-day forecast now is as accurate as 
a three-day forecast produced a decade ago. The slow accumulation of skill, which translates 
into improved products and services, represents a “quiet revolution” in weather prediction. 
 
This quiet revolution began in the 1950’s with very simple computer models that started by 
applying simplified approximations of Newton’s Laws of motion applied to atmospheric 
circulation. With the steady increase in computer power, scientists developed ever more 
sophisticated NWP models, and in the past few decades, these now encompass ensembles of 
predictions of ocean, land, and atmosphere that facilitate an estimation of the variety of forecast 
scenarios that may unfold.   
 
The quiet revolution has come through a massive public investment, whether measured in the 
number of staff involved in system development, in the computational and observational data 
resources needed, or the number of lines of code in the prediction system.   Even with the 
computational horsepower now available, it is impossible to accurately model all of the myriad 
processes that may affect a forecast; the wind blowing through every tree, or the life cycle of 
individual water droplets. Approximations are necessary in these NWP approaches – the 
average dissipation of winds from trees in an area several km on a side, or the average heating 
in a volume caused from the condensation of water vapor across a collection of clouds in a grid 
cell.    
 
Despite enormous investment by NOAA and peer institutions in developing complicated 
approximations (or “parameterizations”) as faithful to known physics as possible, they remain a 
simplification, a source of error in the NWP system, and a maintenance burden. With many 
interacting approximations in the system, isolating and correcting sources of error is an ongoing 
and increasing challenge in the coupled prediction systems.  This requires lots of experts in 
individual processes, it requires lots of thorough and computationally expensive testing and 

https://www.nature.com/articles/nature14956
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iteration. This is, in part, why system upgrades in NWP systems happen only at a cadence of 
once every several years, not every few weeks or months. 
 
Within the last few years and with the advance of artificial intelligence, a radically different 
approach to NWP has been developed. The new models are data-driven; they do not represent 
a complex human codification of the physical laws of motion and parameterized processes.  
Instead, comparatively simple neural-network models are trained. In a common method of 
coding these models, this provides a sophisticated mapping from the current atmospheric state 
to the state a few hours or days hence; the weights used in the neural network are chosen to 
minimize error, often root-mean square error. These mappings are typically chained together to 
provide a prediction; from the current state, a forecast is made to three hours in the future; from 
the forecast at three hours, a forecast is made to six hours hence, and so forth. Henceforth we 
will refer to these data-driven models as deep-learning NWP models, or DLNWP. The 
complexity of these models is great but is hidden within the neural network; the actual number 
of lines of bespoke code written is very small compared to conventional NWP, perhaps by an 
order of 100 or more. 
 
The first low-resolution, proof-of-concept DLNWP models were developed only in the late 
2010’s and were significantly less accurate than conventional NWP forecasts. Informed by 
these proofs of concept, more computational horsepower was made available to train more 
sophisticated DLNWP models, and these have increased in skill at a dramatic rate. In selected 
ways of measuring weather forecast skill, several of these are now competitive with or more 
skillful than forecasts from the world-leading European Centre for Medium-Range Weather 
Forecasts (ECMWF; discussed here). Advanced DLNWP development was mostly led by 
initiatives in private industry including, for example, GraphCast, Met-Net-3, NeuralGCM, and 
GenCast at Google/DeepMind and FourCastNet and CorrDiff from Nvidia. DLNWP represents a 
radical change for weather prediction – simplified code that bypasses the many complex 
parameterizations of physical processes and yet may produce more accurate forecasts.    
 
Understanding of the tradeoffs for conventional versus DLNWP is necessarily tentative given 
the novelty of the latter. The DLNWP approach is surprisingly accurate, given its comparatively 
short history of development.  The forecasts have less systematic error and hence may not 
need the substantial statistical postprocessing of conventional NWP guidance. After training, 
DLNWP predictions are much, much more computationally efficient than conventional NWP, 
perhaps by a factor of 1,000 or more. Suggested limitations to early DLNWP forecasts have 
been quickly addressed by industry developers. Many of the complexities with conventional 
NWP parameterizations are elided in the data-driven approach, leading to a leaner, easier-to-
maintain software stack, one that leverages efficient open-source libraries. Testing new models 
is more straightforward without explicitly parameterizing processes and their interactions, as in 
conventional models. New product generation paradigms may be possible for NOAA customers. 
For example, with the reduced computational expense, the local computation of forecasts may 
be possible, thereby avoiding the cost of massive storage and internet transfer of data from 
centralized production facilities; only model initial conditions need be transferred. This may 

https://ams.confex.com/ams/104ANNUAL/meetingapp.cgi/Session/67180
https://arxiv.org/abs/2212.12794
https://blog.research.google/2023/11/metnet-3-state-of-art-neural-weather.html
https://arxiv.org/abs/2311.07222
https://arxiv.org/abs/2312.15796
https://arxiv.org/abs/2202.11214
https://arxiv.org/abs/2309.15214v2
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facilitate local computation of probabilistic forecasts that greatly aid improved customer 
decisions based on the forecast guidance. 
 
There are disadvantages to DLNWP as we understand it in 2024. It front-loads computations 
into a model training phase which can be computationally very expensive. It requires different 
computational hardware, GPUs versus NOAA’s current investment in CPUs. Many of the first-
generation DLNWP models do not provide guidance with the small-scale weather variability 
forecasters prefer to see, details such as supercell thunderstorms, hurricane eye walls, valley 
fog, or the information on wind gusts. These models are garbage-in, garbage-out; the training 
data for DLNWP must be of high quality, comprehensive, and spanning a wide range of weather 
scenarios, otherwise the trained model may not be trustworthy. Despite these problems, the skill 
of these systems (Fig. 1) and the pace of industry development suggests that overcoming many 
of these limitations will be possible in the next few years. 
 

 
 
Figure 1: Reproduced from Lang et al., ECMWF Newletter, 178, Winter 2023-2024.  The IFS is the 
conventional NWP system of ECMWF, the AIFS is the deep-learning, artificial-intelligence version of the 
system.   Higher skill is better. 
 
Because DLNWP is so novel, too early to know for sure whether it will play a limited role in 
weather prediction or whether it will represent a core capacity years hence. However, the rapid 

https://onlinelibrary.wiley.com/doi/pdf/10.1111/risa.14245
https://www.ecmwf.int/sites/default/files/elibrary/12024/81535-newsletter-no-178-winter-202324.pdf
https://www.ecmwf.int/sites/default/files/elibrary/12024/81535-newsletter-no-178-winter-202324.pdf
https://www.ecmwf.int/sites/default/files/elibrary/12024/81535-newsletter-no-178-winter-202324.pdf
https://www.ecmwf.int/sites/default/files/elibrary/12024/81535-newsletter-no-178-winter-202324.pdf
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advancement of these data-driven methods argues for a substantial NOAA investment. This 
emergence of DLNWP has come so rapidly that NOAA has yet to develop a comprehensive 
agency DLNWP plan, with its existing plans still largely reflecting conventional NWP 
development priorities, or with the use of AI in NWP subspecialties rather than in holistic 
DLNWP. For example, in late 2021, the NOAA Science Advisory Board prepared a 
comprehensive report for NOAA, Priorities for Weather Research (PWR). While AI/deep 
learning was mentioned in this report, this preceded many of the developments in private 
industry noted above, and DLNWP was not highlighted as a key priority for future NWP.  NOAA 
has its Center for AI, but again, DLNWP developments are so novel that existing AI funding 
within NOAA is not concentrated on DLNWP but instead facilitates other smaller projects. The 
NOAA Weather Program Office mentions AI in its plan, but in limited capacities, such as in 
model statistical post-processing. DLNWP activity is yet to be mentioned as a priority in the 
NWS Strategic Plan or in the OAR Strategic Plan.   
 
Recognizing the radical potential of the DLNWP approach, peer institutions such as the 
European Center for Medium-Range Weather Forecasts (ECMWF), the UK Met Office, and 
Environment Canada have recently made major investments in DLNWP, exploring the efficacy 
of DL-based global probabilistic prediction, data assimilation, and coupled seasonal and climate 
prediction.   
 
Motivated by these developments, NOAA has conducted several recent meetings (here, here) 
to discuss potential investment and focus areas, but NOAA has not yet made a core investment 
directly in DLNWP. This delay represents a substantial risk to NOAA, which is expected to be 
the authoritative provider of weather forecasts for the US. 
 
In the statement to follow, we provide a concise set of basic recommendations for near-term 
NOAA actions specifically related to DLNWP. These will facilitate NOAA in its ability to evaluate 
DLNWP and put it on a sound foundation should this approach be as revolutionary as early 
results indicate. These recommendations are preliminary steps – they are not a comprehensive 
list of all activities NOAA may require to effectively incorporate DLNWP into regular operational 
production and product generation. The recommendations presume that once DLNWP is better 
understood within NOAA and a base capacity is established, NOAA will be well positioned to 
address how these new forecast capacities are turned into improved products and services. 
 
Recommendations 
 
1. A substantial investment in new staff with DLNWP expertise. NOAA will need scientists with 
different skills in deep learning, whether achieved by recruiting from other parts of the enterprise 
or through retraining. We encourage NOAA to identify how many they believe are needed to 
establish a base DLNWP capacity; what skill set is necessary from those FTE’s; and we 
recommend that NOAA briskly hire or retrain this core staff. Some of the initial work will be 
managerial in character: Writing a roadmap, facilitating collaborations, elucidating what is 
possible with the new technology to NOAA staff and stakeholders. Hence, the team should 
include scientist leaders as well as scientists familiar with deep learning.    

https://sab.noaa.gov/wp-content/uploads/2021/12/PWR-Report_Final_12-9-21.pdf
https://www.noaa.gov/ai
https://wpo.noaa.gov/wp-content/uploads/2022/11/WPO_2022_2026_Strategic_Plan_Final.pdf
https://www.weather.gov/media/wrn/NWS-2023-Strategic-Plan.pdf
https://research.noaa.gov/wp-content/uploads/2023/05/OAR-Strategy-2020-2026-14.pdf
https://www.nesdis.noaa.gov/news/noaa-and-ostp-workshop-artificial-intelligence-and-weather-prediction
https://psl.noaa.gov/events/2023/ai4nwp_workshop/
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An appropriate level of initial staffing to develop and evaluate a base capacity is not easily 
determined and is dependent upon several factors. Based on the very promising DLNWP 
results, ECMWF recently added 15 FTE’s working at the intersection of atmospheric predictions 
and deep learning, this for an organization much smaller than NOAA, with a narrower mission. 
After the DLNWP technology is thoroughly evaluated and advanced in readiness level, more 
staff may need to be reoriented to the transition to operational DLNWP-based products and 
services, but decisions on these can await a more comprehensive understanding and 
development of a core DLNWP capacity.      
 
2. Roadmap. NOAA should recognize the potential revolutionary character of DLNWP and 
incorporate this into relevant strategic plans as well as more directed documents. This would 
include preparing a living roadmap document for DLNWP evaluation and development, with the 
recognition that this topic area is rapidly developing and that adjustments to it are to be 
expected. A DLNWP roadmap should identify key research questions, necessary data sets, 
DLNWP focus areas, and a plan of action. The roadmap should outline how NOAA will train a 
fewer number of prediction systems while serving the diversity of NOAA operational NWP 
needs, given that DLNWP model training can be computationally expensive. It should also 
include an early assessment of the investments necessary to transform today’s operational 
system to a future system that is potentially supported by DLNWP. Since DLNWP systems may 
have very different software architectures and pipelines, DLNWP scientists should not be unduly 
constrained by conventional NWP approaches.  
 
3. Data collation and reanalysis. DLNWP methodological development can benefit from large, 
curated data sets including reanalyses and long time series (at least 20 years, ideally 40 years) 
from major observing systems such as satellite radiances, radars, and conventional data. With 
ECMWF/Copernicus providing high-quality, lower-resolution multi-decadal global reanalyses, 
there is a particular need for very high resolution, high-quality, unbiased reanalyses and data 
collections covering areas of US interest, including CONUS, hurricane basins, Alaska, and 
Hawaii, designed to serve multiple use cases and made readily available to all developers 
across the enterprise. These will facilitate the generation of products such as Warn on Forecast 
and high-resolution precipitation guidance for NOAA’s hydrologic predictions. The rapid 
production and public dissemination of such data should be an initial priority. We note that 
DLNWP and reanalyses are not necessarily independent activities.  For example, as the data 
assimilation underpinning reanalyses requires a prior forecast and an estimate of its uncertainty, 
the advance of DLNWP may facilitate the more computationally efficient reanalysis production. 
 
4. Changes in computational resourcing. NOAA has largely assumed that model development 
and operational production costs would be comparable and would be conducted primarily using 
many CPUs, and it has purchased supercomputer resources with this in mind. DLNWP breaks 
this paradigm. Surges of GPU-based computations will be required for model training, but 
radically less computational resources may be needed for prediction. Re-thinking NOAA high-
performance computational resourcing will be needed alongside the development of a DLNWP 
capacity and its evaluation. NOAA should evaluate how much computational resources will be 
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needed for initial DLNWP training and data set development to get it to a point of being able to 
more comprehensively evaluate DLNWP and estimate longer-term computational resourcing.   It 
should provide those resources to the DLNWP developers. 
 
5. Partnerships. Collaboration is in the mutual interests of partners across the enterprise, given 
the cross-disciplinary and rapidly evolving nature of DLNWP and the natural synergies. Industry 
partners want ready access to NOAA data for their own development, and NOAA wants access 
to early industry experience with DLNWP. NOAA should identify barriers to industry, academic, 
and pan-government collaborations and work to address them. NOAA should make all its 
DLNWP data readily available to others through partnerships with cloud providers. Pan- 
government collaborations are greatly encouraged where they advance NOAA interests; 
however, it is important for NOAA to proceed briskly with DLNWP. Other federal agencies may 
be slower to pivot. 
 
6. Management of DLNWP. As NOAA DLNWP will be built from the ground up, there is an 
opportunity to improve upon past practices. We recommend that NOAA build and manage its 
DLNWP as a coherent team, working collaboratively in pursuit of the common goal, with the 
enthusiastic support of all affected line offices. Any ancillary seed projects (within or across line 
offices) need to advance NOAA’s overall DLNWP position and be aligned with the main agency 
DLNWP plan and resource pool. 
 
Summary 
 
To better serve its customers with state-of-the-science forecast products, NOAA has an 
opportunity and a responsibility to explore deep learning numerical weather prediction, 
resourcing it commensurate with its game-changing potential. The NOAA Science Advisory 
Board’s Environmental Information Services Working Group has outlined what we believe are 
constructive steps to this end. 
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